S

——

c;;E'w Collaborative Research on Energy SYstem Modelling v3.3,05/12/2024

CRESYM Software Development Guidelines

In general, any software must be delivered with the aim of clarity, modularity, completeness,
interoperability, maintainability, and standardisation. This document intends to provide guidelines to
ensure a minimum quality level and harmonised project results. It will be updated as the subject
matures in CRESYM and with partners consultation.

These guidelines are not absolute requirements. However, they should constitute a reference for main
software development choices.

Being aware that some guidelines might require more coding experience, a first training session has
been provided with CodeRefinery in September 2024, in line with these guidelines. All training material
is available here: https://coderefinery.github.io/reproducible-python/. More sessions will be
programmed.

1) Cleanness (required)

/ Clear naming: all variable names should make sense, are specific, in English and respect the
standard of the programming language.

/ No hardcoding (use of config files), changeable values should never be hardcoded, main
parameters can be configured from the command line/config file. Examples: all paths for
inputs/outputs, reference files and directories, filtering parameters, random number
generation seeds, variant algorithms, verbose etc.

/ Modularity (function, objects): the “Do not Repeat Yourself” rule is applied (functions should
not be longer than a screen, functions have only one function). Pure functions! are always
preferred. “Project code” is differentiated from “Library code” (for instance: data handling
functions).

/ Reuse of existing robust libraries, package managers (with pip for instance).

/ PEP-8 convention for Python (https://peps.python.org/pep-0008/), C++ core guidelines for
C++ (C++ Core Guidelines (isocpp.github.io)), Oracle code convention (for Java)
codeconventions-150003.pdf (oracle.com), etc.

/ Refactoring: Regularly, at least before the first uploading on GitHub; As soon as debugging
becomes too heavy; Every major version. “Code smells” (duplicated code, long functions, long
parameter lists) are rectified. First focus on small changes (giving variables better names,
making global variables local to a function, eliminating obvious duplicate code, breaking up
large functions into smaller ones, grouping related functions into classes, and reorganizing
functions and classes into appropriate files). Error correction libraries can be downloaded in
most IDE.

1 pure functions have no notion of state: They take input values and return values. Given the same input, a pure function always returns
the same value.

1/4

https://coderefinery.github.io/reproducible-python/
https://peps.python.org/pep-0008/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://coderefinery.github.io/reproducible-python/refactoring-concepts/

S

——

c;;?w Collaborative Research on Energy SYstem Modelling v3.3,05/12/2024
Extra source: https://arxiv.org/pdf/1210.0530.pdf

Additionally, tools such as SonarQube, Azure, Jenkins can be used to provide a full code analysis.

2) Documentation
Required (progressively while TRL increases)

/ (Efficient) In-code documentation: The code is “self-documented” including docstrings,
comments and clear structure and naming. Comments explain “why” the code is written this
way, while what it does should be explicit from the naming and code structure (e.g. by
imitating human sentences: function=verb, variable=name, “is” for Boolean etc.). For
automatic documentation, see below.

/ License file (open source, without copyleft?): Apache License, Version 2.0 or Mozilla Public
License 2.0 are selected for new software.

/ (Small) Examples: Examples are included to illustrate the tool’s functions and to help any
external users to understand it. They are included in the testing procedure and in the
documentation of the functions if any. There are never too many examples, they should show
the main functionalities of the software.

/ README file: Written as if this was the only thing users will read, include: the code purpose,
how to install and configure, where to find the full documentation, the license, how to test it
and acknowledgements (including recommended citation), and a QuickStart guide. The
README must be in .txt, .md, or .html.

/ Requirements/environment file is included, listing all dependencies needed. The project can
be built under a virtual environment (e.g. using Conda or Anaconda in Python) to clarify
dependencies formally and ensure its reusability.

/ Installation instructions, User Manual, a quick start guide: Can be based on text, pictures,
class diagrams, videos, GIFs, code to copy-paste etc.

/ Citation file (CCF), associate a DOI (Zenodo/Figshare): It can also be written in the README
(as a BibTeX entry for instance), and a written reference for your publication in your README.
Free way to get a DOI: submitting to the Journal of Open-Source Software.

Advised
/ Tutorial/demo: with a video for instance.

/APl documentation: with at least typed inputs and outputs, the type of errors it can raise.
Objects should have their methods and attributes described. Style guides exist
(google.github.io/styleguide), and tools to automatically generate the doc (github.com/sphinx-
contrib/napoleon).

/ Automatic documentation (Examples of tools: Doxygen, MkDocs, Sphinx etc.)

2CRESYM has elected a non copyleft license, for its partners to be free to reuse the code internally.

2/4

https://arxiv.org/pdf/1210.0530.pdf

S

——

c;;?w Collaborative Research on Energy SYstem Modelling v3.3,05/12/2024

/ Version controlled documentation: To be kept inside the Git repository. The documentation
should include the main changes between the two versions. Examples of tools to generate such
documentation: readthedocs.org, zenodo.org.

/ Help command, version number: For command line interfaces (usage, subcommands,
options/arguments, environment variables, examples etc.), provide an —help command for the
user. Tools exist to help building any command (for Python for instance: click.pocoo.org)

/ Error messages that provide solutions or point to the documentation (they state what the
error is, what the state of the software was when it generated the error, and either how to fix
it or where to find information relevant to fixing it). Where possible, use the log classes and
their levels (fatal, error, warning, info, debug, trace).

3) Tests
Required (progressively while TRL increases)

/ Functional and integration test cases: should have a minimal code coverage value (e.g. 75%).
Include various test cases to evaluate the performance of the code.

/ Unit tests: Tests of individual functions. Can be included with the help of dedicated modules
(e.g. “unittest” in Python: https://docs.python.orq/3/library/unittest.html, Pytest). In Github,
the tool Codecov can be used to see if tests sufficiently cover the code base.

/ Non-Regression Tests: to be run before committing modifications, and progressively enriched
with the functional/integration test cases created for each new function. Can be a mix of unit,
functional and examples. Can be added to GitHub Actions to run the tests automatically on
every change.

/ Documentation: Tests should be well documented (What is tested? How is it tested?), and
easy to launch (e.g. with a —test command).

/ Testing the software compilation and installation on the expected environment (OS, third
parties and environment variables). Both release and Debug mode should be tested. Physical
or virtual machines, or containers like Docker can be used.

/ Testing the software with new users

Advised

/ The “test-first” approach is applied: the test is written before the function itself (to identify
wrong results and not only bugs).

/ Provide a workflow that automatically sets the software environment, compiles and runs the
tests of the software within it.

3/4

https://docs.python.org/3/library/unittest.html

S

——

c;;?w Collaborative Research on Energy SYstem Modelling v3.3,05/12/2024
4) Versioning
Required

/ Git: As a first step, Cresym’s Github private repository or other repository can be used for
software versioning (for harmonization purposes, GitHub is preferred). Once the code is ready
for publication, the project is moved to a public repository. Permissions are clearly defined in
both steps (who can access, modify, ask for a pull request etc.). Use Issues and Pull Requests
(specific templates can be used). Follow advice on commits. For collaborative work, main
project members use clones and branches for developing new functions (or any working line),
other contributors fork the original repository to their workspace (before cloning and
branching). See also advice for avoiding and solving potential conflicts.

/ Early and regular releases, commits should include a limited number of modifications.
/ Semantic versioning (semver.org) should be used (“1.0.1” = “MAJOR.MINOR.PATCH"):

1. MAIJOR version when you make incompatible API changes
2. MINOR version when you add functionality in a backward compatible manner
3. PATCH version when you make backward compatible bug fixes

Tags can also be used (using shields.io for instance).

5) Other

Loosely Required
/ Language: Python (for scientific programming prototypes)

/ Reproducibility: Releases are versioned, with a version for each published paper. Reproducible
workflow (Shell, Jupiter, Snakemake) is used. The version number is available from the
command line (“-version’ or ‘-v’). The code produces identical results when given identical
inputs (if randomness is used: the seed is set to a consistent value). The project is built under
an isolated, virtual environment (e.g. using Conda or Anaconda in Python), associated with file
listing dependencies (e.g. requirements.txt, environment.yml in Python).

/ Interoperability: must be considered from the beginning. Standard and common-sense
solutions are chosen over personal preferences. For instance: standard input/output files
formats, APIs, models are used. Clear versioning and identification of third parties’ version and
their compatibilities are given. The optional nature of objects should be clearly identified.

/ “Think before you code”: check the literature, discuss with your colleagues, organize your
information (sketches, lists, mind maps etc.). Optimise the computation time later, first use
small examples. Document-driven development can be considered (write the documentation
first, and then the code to make it true).

4/4

https://github.com/CRESYM
https://coderefinery.github.io/reproducible-python/version-control/practical-advice/
https://coderefinery.github.io/reproducible-python/version-control/conflict-resolution/

